
ADAOB1 784 WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/6 9/2

'AN EXTERNAL SCHEMA FACILITY FOR CODASYL 1978.(U)

UN1978 E K CLEMONS N00014-75-C 0462

UNCLASSIFIED 7-10-03 NI.

136

111I1 5 1111 .4 1 =

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

AN EXTERNAL SCHEMA

FACILITY FOR CODASYL 1978

ERIC K. CLEMONS

78-10-03

.

AN EXTERNAL SCHEMA FACILITY FOR
CODASYL 1978

Eric K. Clemons

7 8-10-03

4

Department of Decision Sciences
The Wharton School

University of Pennsylvania
Philadelphia, PA 19104

Research supported in part by Office of Naval Research
Contract N00014-75-C-0462.

80 3 "

'p
801 0

SECUiRITYv CLASI.FICATION or THIS PAGE (14hon Dot* Lnf~ej_____________________

// REPORT DOCUMENTATION PAGE BFRE COMPTING OM

Z.GVT ACCESSION NO, 3 IPIENT'S CATALOG NUMBER9

I. TLE (ad S brine.) S. TV !RfRgnr...ga OVEREO

An External Schema Facility for CODASYL17 ohia o

6. PERFORMING ORG. REPORT NUMMBER

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _'78-10-03 b

7. ATHO04)S. CONTRACT OR GRANT ;NaSo(j

Eric J.ceh NB')lI-75-C-O0462J

9- PERFORMING ORGANIZATION NAME AND ADDRES2S 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Decision Sciences- V AREA S ORK UIT NUM1191R

The Wharton School Univ. of Pennsylvania. Task NR0L49-272
Philadelphia, PA 19104

I%- CONTROLLING OFICE NAME AND ADRESS IS. REPORT ,Tt TOffice of Naval Research.. 7j~J
Department of thi Navy IS. NUNSErW FAGES
800 N. Quincy St., Arlin Kon, Vi2170

1.MONITORING AGICUCY-NANE A AODRESS(I* EtI0e,,Ihbm.Conmln 0 1 . IL SECURITY CLASS IatM@d repa

* - Vnclass if ied'

II&?et. ASUIFC&AI@NOWNSRAMKU 1--

Approved for public release; distribution unlimited

17. DIST RIOUTION ST ATEMENUT (of the ab.Iaea Moor.ed to eittoo. it 1Ir.mA "M Re4Pad

IS. SUPPLEMEN"TARV NOTES

IS. Key *41ROS1 (Con.ame s o~ old* of fteA...a and 861a0eIF ar bdoah OWN"

CODASYL, Data Description Language, external schema facility,
virtual data base

2S. AOSTMACT (Cain... ge rwvv side of .aaeeaap weE Idml
--re--an extension to the CODASTh Data Description Languages a new

external schema description language to provide an external sch~y
more powerful than that presently offered by CODASYL subscheuiaM .Zh~sT1f
external schema facility that, in effect, offers applications programi-s a
virtual data base. Programmers will use records formatted, not like those

stored in the common data base, but like the cognitive structures employed
in program development. A possible language for external schema definition
is introduced.it

~~~~. ~1 OD 1 1473 E uor I movSI@SLT esURT isSIICTO OP TwinS A

4I



ABSTRACT

We propose as an extension to the CODASYL Data

Description Language a now external schema description

language to provide an external schema facility more

powerful than that presently offered by CODASYL subschemas.
We note that the present facility relies on records and
sets that closely resemble those employed in the schema,
with unfortunate implications for programmer productivity,
data independence, and communications channel traffic.
We propose instead a powerful external schema facility

that, in effect, offers applications programmers a virtual
data base. This data base, while derivable from the stored
data base, is not constrained to resemble it in form; thus

programmers will use records formatted, not like those
stored in the common data base, but like the cognitive
structures employed in program development. A possible
language for external schema definition is introduced.

ACOeSsion PFor
M S Gft-_I
DDC TAB
Unanoured
Justification

fillM.. A.



AN EXTERNAL SCHEMA FACILITY
FOR CODASYL 1978

1. Introduction

The CODASYL data description and data manipulation

languages are rapidly emerging as de facto national data base

standards; in fact, John Berg of the National Bureau of Standards,

currently Acting Chairman of the newly reconstituted ANSI/X3/SPARC
I

Data Base Study Group, states that the CODASYL DML and DDL will

emerge as formal national standards by 1981 1. I have previously

stated my reasons for considering these choices unfortunate, while

acknowledging the need for any future DBMS standard to be down-

ward compatible so as to provide continuing support for user

application implementations based on these languages (8]. In

this paper I present a more comprehensive solution to the problems

inherent in the CODASYL specifications, an extension to the DDL

that would permit development of an alternative DML with better

support of applications programming.

My principal objection to the CODASYL 1978 specifications

is the nature of the programmer interface. This is not a new

objection; Engels, an original member of the Data Base Task Group,

published his objections to this interface (11] within months of

the publication of the DBTG Report [9]. The proposal of macro

I ' "'" -
I..

£



m3

facilities to hide this interface from the programmer soon

followed [171. But, with the introduction by the original

ANSI/X3/SPARC Study Group of the three-schema data base archi-

tecture, we now have the ability to provide a superior interface

for applications programmers. In section 4 of this paper I will

describe an external schema facility with far greater capabilities

than the CODASYL subschema facility that it is intended to

replace.

2. Backzround Material

2.1 A Review of the ANSI/SPARC Reports

By 1975, discussion of the "correct" data model --

hierarchical, network, or relational -- had become widespread,

* occasionally acrimonious, and futile. No single data model could

be selected. With the publication in l%75 of the first ANSI/SPARC

Data Base Study Group Report [1], one reason for this impasse

became clear: There were three different users of data base

systems, interacting with the systems at different levels, and

with dramatically different needs.

The data base machine itself needed device-level detail

including data descriptions, addresses, and access paths, to per-

mit data retrieval and efficient system operation. The enterprise

as a whole required logical completeness: a description of all



V 4
entities of interest, their significant attributes, and their

relationships. This need not include device detail needed for

* efficient operation, but must be sufficiently complete to support

the enterprise's collection of diverse operations. And the

individual applications programmer required logical simplicity:

data structures perhaps less general than those provided to

support the numerous and diverse needs of the full organization,

but well suited to the specific program in which they were employed

and closely matching the cognitive structures the programmer

employed in its preparation.

Recognizing that these requirements might prove to be

incompatible, the ANSI/X3/SPARC Study Group proposed a multi-level,

multi-schema data base architecture. At the machine level a single

internal schema provided details permitting efficient operation.

For the enterprise a single conceptual schema provided an integrated

description of data end their logical relationships. And, for each

application program, an external schema was provided that offered a

* view of the data not necessarily similar in form to that of any

other schema, but well suited to the specific programming task

being performed.

In this paper we are not concerned with the details of

the internal schema, since the existence of the conceptual schema

makes the internal level of little consequence to the design of the



F
5

programmer interface. We will also not be concerned with the

selection of a conceptual schema that is in any sense "complete"

or the best possible, primarily because no such design has been

developed; rather, we shall assume that the pro-eminence of

CODASYL implementations justifies for the moment the selection

• of the CODASYL model for the conceptual level.

2.2 Role of the External Schema

My principal area of interest has for several years

been the design of external schema facilities. This level of the

three schema architecture has the greatest effect on programmer

X productivity. It is the level with which the greatest number of

users will interact, and thus the most important level for formal

standardization. It is, unfortunately, the level at which both

ANSI/SPARC and CODASYL offer the least guidance to DBMS designers.

The most Important role of the external schema should

be to facilitate programmer use of the data base. This can best

be accomplished by providing user views, essentially virtual

data bases that are closely designed to match the cognitive

structures that the user employs in preparing his program rather

than the data structures provided in the data base. The records

in these virtual data bases must of course be derivable from the

data actually stored; virtual data bases may be subsets, reformatted,

with records combined in ways that simplify or eliminate the need

for programmer navigation.



6

A single example will serve to make these concepts clear.

We consider a simple data base: courses include multiple sections,

3students have taken many courses, and for each student in each

course a single grade is stored. Irrespective of the model employed

at the conceptual level -- hierarchical, network, or relational --

and irrespective of the programming language employed, an excessive

amount of work may be required to prepare some simple queries.

For example, to prepare a student's summary transcript with name

and repeating term and term average information:

NAME

TERM, AVERAGE
TERM, AVERAGE

TERM,'AVERAGE

using the CODASYL data base depicted in figure 1

SECTIONIDI STUDENT-NAMEj

I GRADE:G

Figure 1 -- A CODASYL Data Base to Support Student
Transcripts, Course Rosters, and Registration

L_______



7

we require the code segment included in figure 2.

* WORKING STORAGE INCLUDES A STRUCTURE OF THE FORM:
* 01 TERM-HISTORY, INDEXED BY POSIT.
* 02 TERM-COUNT PICTURE S99.
* 02 TERM-ENTRY OCCURS 15 TIMES.
* 03 TERM-ID PICTURE X(6).
* 03 TERM-POINTS PICTURE S999.
* 03 TERM-CREDITS PICTURE S999.
* 03 TERM-AVERAGE PICTURE $9V99.

FIND-SUMMARY-TRANSCRIPT.
FIND STUDENT RECORD.
PERFORM CLEAR-TABLE.
MOVE 0 TO ERROR STATUS.
FIND FIRST GRADE RECORD IN STU-GRD SET.
PERFORM GRADE-LOOP THRU GRADE-LOOP-EXIT

UNTIL ERROR-STATUS NOT EQUAL 0.

PERFORM SORT-TABLE-BY-TERM THRU SORT-TABLE-EXIT
VARYING I FROM 1 BY 1
UNTIL I GREATER THAN TERM-COUNT.

pPERFORM COMPUTE-TABLE
VARYING I FROM 1 BY 1
UNTIL I GREATER THAN TERM-COUNT.

* SORT-TABLE-BY-TERM IS SIMPLE SORT, NOT SHOWN.
* COMPUTE-TABLE SETS TERM-AVERAGE (I) -
* TERM-POINTS (1) / TERM-CREDITS (1),
* ALSO NOT SHOWN.
* CLEAR TABLE ZEROES ALL ENTRIES IN TABLE, NOT SHOWN.

GRADE-LOOP.

FIND NEXT GRADE RECORD IN STU-GRD SET.
IF ERROR-STATUS NOT EQUAL 0,

GO TO GRADE-LOOP-EXIT.

GET GRADE RECORD.

FIND OWNER RECORD OF SEC-GRD SET.
GET SECTION-REC RECORD.

FIND OWNER RECORD OF CRS-SEC SET.
GET COURSE RECORD.

* L
4 !



8

SEARCH TERM-HISTORY:
AT END ADD 1 TO TERM-COUNT,

MOVE TERM-COUNT TO POSIT,
MOVE TERM TO TERM-ID (POSIT)

WHEN TERM-ID (POSIT) EQUALS TERM, NEXT SENTENCE.

CALCULATE TERM-POINTS (POSIT) -

TERM-P-OINTS (POSIT) + GRADE.GRD*
COURSE.CREDITS.

ADD COURSE.CREDITS TO TERM-CREDITS
(POSIT)

GRADE-LOOP-EXIT.
EXIT.

Figure 2 -- DML Code Segment to Create Summary Transcript.

Clearly, we would prefer to say:

READ SUMMARY-TRANSCRIPT

where summary-transcript is a rather simple record in the user

view, constructed by a rather powerful external schema facility.

3. Limitations of the Present CODASYL Subschema

As I have written elsewhere (7, 8], a major limitation

of the current CODASYL specifications is the design of the sub-

schema. In fact, the subschema so closely resembles the conceptual

IIP



9

schema that it cannot truly be considered an external schema

facility. Both must employ the network data model. More sig-

nificant, both employ the same collection of record types and

sets, although in the subschema some minimal reformatting may

be provided. As a consequence, the programmer is still required

to perform navigation to accomplish all but the most trivial of

tasks. Also, there is little to protect the applications programs

from changes to the conceptual schema; since the external schemas

t are also affected by most changes, these programs will need to be

rewritten. We note, for example, that too often the addition of

an unanticipated application to be supported will necessitate

changing the conceptual schema from a simple hierarchy to a

confluency representing a many-to-many relationship. Because

of the close relationship between schema and subschema, programs

processing this data base will need a different set of FIND and

GET statements, and perhaps different control logic as well.

Finally, since the subschema's ability to perform data aggregation

and data reduction is so limited, these functions must be performed

by the application program through host language statements; thus,

in a distributed environment, a program that requires only averages

will still have to request individual course and grade records,

greatly increasing the necessary channel traffic.

In summary, we note that the form of the CODASYL sub-

schema facility has the following results:

I At



I

10

1. It limits programmer productivity by requiring

navigation to perform almost all inter-record

associations; this has been found to be the

most difficult aspect of data retrieval in any

language and using any data model (12]

2. It limits data independence because changes to

the conceptual schema necessitated by addition

of new applications will alter the existing

external schemas as well [8, 15]

3. It increases channel traffic by limiting the

data reduction that can be performed by the

remote data base machine

4. Design of an External Schema Facility

4.1 Introduction to a Traditionalist's External Schema Facility

The external schema facility proposed is traditional, in

that it does not change the way we view the programming task; it

does not add new features such as operational naming [16],

generalization hierarchies, or higher level language statements

to perform implied iteration. Rather, it changes the way we view

the external schema facility. In fact, in terms of programming

languages it represents a step backwards: We use the external

# I.



1

schema to hide from the programmer the fact that he is employing

a DBMS and remove all DML statements from the host language.

Our intention is to provide each programmer vith a

virtual data base composed of virtual files suited to a particular

application. Interaction with the data now requires only a tradi-

tional file-oriented READ, and we employ the external schema

facility to transform this read request into the appropriate

sequence of FIND and GET statements and utility calls to perform

sorting and data reduction.

It appears impossible to design a truly universal data

base interface; the requirements for accounting applications are

simply too different from the requirements of a three dimensional

display system offering variable perspective drawing to support

architectural design. We have concentrated, therefore, on an

interface to support common data base uses: data retrieval,

report generation, and update.

After years of commercial programming and intensive

study of applications requirements, I believe that the interface

provided for individual applications programmers need support no

data structure more complex than hierarchies. This is not to say

that for the enterprise, at the conceptual level, hierarchies are

sufficient; rather, the networks at the conceptual level are

9' 1



12

required by the incompatible collection of hierarchies needed by

the application programs. For example, one application to generate

transcripts may require the following data structure:

STUDENT
TERM

COURSE, GRADE
COURSE, GRADE

TERM
COURSE, 

GRADE

A related application to provide class lists for faculty would

require

FACULTY-NAME, COURSE, SECTION
STUDENT-NAME

STUDENT-NAME.

The conceptual schema to support both applications is not a

hierarchy but a network, as shown in figure 1.

This does not mean that any programmer requires the full

plex structure. More significant, it does not imply that any

single programmer be forced to perform complex inter-record navi-

gation to reconstruct information objects of interest, such as

transcripts and course listings. Surely there exist data that do

.* represent graphs, such as transportation and telecommunications

,4 r



I

13

networks; for such applications the data must indeed contain

*network information, such as the costs and capacities of trans-

portation between two locations, but I remain unconvinced that

even in such cases network structured data, with a network struc-

tured schema, provide a superior programmer interface.

4.2 Restructuring to Produce Hierarchies

If we are to offer individual applications programmers

an adequate and useful external schema facility based on hierarchies,

then we must provide an adequate facility for constructing useful

hierarchical v.irtual records from the stored data. In particular

associations between records or among several records must be made,

permitting required data to be accessed; individual items required

for virtual records must be defined, permitting values to be

retrieved or constructed; and the virtual record must be structured

as the user requires. We will treat structuring in this section;

data access and item definition are treated in the following

sections.

Three concepts are important in understanding hierarchical

data structures: extent, entry type, and content. Extent may be

single or all; a structure with single extent has only a single

subordinate entry, while a structure with all extent has repeated

subordinate entries. Thus, if we wish to associate in a single

/! *1



14

record a student name and all his course grades, all extent is

required; if each record is to contain only a single course grade

then single extent is required.

An individual entry in a hierarchy may be either simple

or irouped. Thus an entry may correspond to information about a

single course taken if it is simple, or about all courses taken

in a single term if the entry has grouped structure. Extent and

entry descriptions may be combined; for example, all extent and

grouped entries would permit data to be grouped by term and entries

for all terms to be combined in a single record.

The information content of a structure may be complete,

or only summary information may be contained. For example, the

data structure may contain a complete record of courses taken and

grades received, or it may contain only term averages.

The attributed for extent, entries, and content may be

combined to yield a 2x2x2 classification of data structures. In

the resulting eight-way classification only seven combinations

are of use; the combination simple, single, summary is readily

seen to be of no interest. Examples of each of the seven types

of structures are shown as figure 3.

,. ,

V!



15

R. J. Nash Fall 78 DS15 A
R. J. Nash Fall 78 DS25 A

R. J. Nash Fall 78 STAT1 B

a.) three records, SIMPLE, SINGLE, COMPLETE, each reporting
on a single student in a single course

R. J. Nash 3.6
Fall 78 DS15 A
Spr 78 DS1 A
Fall 78 DS25 A
Spr 78 DS2 A
Fall 78 ECON2 A
Fall 77 ACTI B
Fall 77 FIN1 B
Fall 78 STATI B
Fall 77 ECON1 B
Spr 78 FIN2 A

b.) one record, SIMPLE, ALL, COMPLETE, having cumulative
average as well as individual grades

R. J. Nash 3.6

c.) one record, SIMPLE, ALL, SUMMARY, having cumulative
average but no individual srades

R. J. Nash 3.6
Fall 78 3.75 DS15 A

DS25 A
STATI B
ECON2 A

d.) one record, GROUPED, SINGLE, COMPLETE, displaying
cumulative average, as well as courses and term
average for a single term

R. J. Nash 3.6
Fall 77 3.0 ACT1 B

FIN1 B
ECON1 B

Spr 78 4.0 DSl A
DS2 A
FIN2 A

Fall 78 3.75 DS15 A
DS25 A
STAT1 B

ECON2 A

e.) one record, GROUPED, ALL, COMPLETE, displaying

cumulative average, as well as courses and term
* ,average for each term

* ~o



pi

16

R. J. Nash 3.6
Fall 78 3.75

f.) one record, GROUPED, SINGLE, SUMMARY, displaying
cumulative average as well as term average for a

single term

R. J. Nash 3.6
Fall 77 3.0
Spr 78 4.0
Fall 78 3.75

g.) one record, GROUPED, ALL, SUMMARY, displaying

cumulative average as well as term average for

each term

Figure 3 -- Examples of Each of Seven Record Types

in Classification of Hierarchies.

By specifying multi-level groupings, it is possible to

define more complex structures and provide more general summaries.

For example, we may vish to group courses by school (arts,

engineering, business) and within school by term, to provide term

averages by school and overall school averages. And, as shown in

the following section, structured data elements may themselves

comprise structured elements, permitting records of great com-

plexity to be declared. In fact, with the addition of order

specification to this seven-way classification, a general external

schema facility of substantial utility has been developed.

, I I Ii I i I . .



r!

I

17

4.3 Access Information

Of course, the data included in virtual user records is

derived from data present in the stored data base; therefore it is

necessary that data be retrieved to permit user records to be con-

structed. We feel that it is necessary to specify in the mapping

definition precisely which records are to be accessed, rather than

to permit the external schema facility itself to determine which

records are required. This provides generality: access conditions

of complexity, based on set associations and record content, may be

used when necessary. It requires the author of the map to specify

which access path to use when multiple paths exist, and it provides

a small additional level of data independence by requiring access

specification, even when only a single path exists. In short,

mandatory access specification increases the probability that the

data retrieved are actually the data desired.

In a well designed CODASYL implementation, most of the

frequently used inter-record associations will be between records

related by set occurrence. Therefore, we expect that the most

important means of access path specification will be through set

membership or ownership. Since the records desired may compose a

subset of members of a set, qualification may also be necessary.

'



18

4.4 Data Item Specification

it is necessary to specify all desired data elements in

the user record since not all data in the stored records are to be

included in the user record and not all items in the user record

are directly retrievable from the stored records. Data items are

of three types:

1. real items, retrieved from the stored data base

2. virtual elementary items, calculated from the

stored data base using standard functions,

according to computations specified

3. virtual structured items containing additional

data elements

Since the components of virtual structured items may themselves be

virtual structured items, complex records may be constructed as

needed.

5. An Extension to DDL: A Schema to External Schema Happins
Lantuaae

5.1 Introduction to a Mapping Language

The mapping language proposed is based upon the classi-

fication of hierarchies introduced in section 4.2. The language

will specify all information needed to map stored data base records

into the desired virtual user records. Structuring information,



19

I

which determines the form of the user record, is described in sec-

tion 5.2. Access information, which determines which data base

records will be used, is described in section 5.3, and data item

definition, which determines the actual content of the user record,

is described in section 5.4.

5.2 Structuring Information

Structuring information specified in the map determines

the class of hierarchy being defined; that is, the options

specified here determine extent, entries, and content. The form

of a structure definition is:

STRUCTURE structure-name: (option-list)
access-statement.
data-item-definitions.
END structure-name.

A structure may correspond to a user record definition, like an

01-level COBOL entry, or to a complex entry within a user record.

The option-list specifies single or all extent, simple or grouped

entries, and complete or summary only content. Defaults are

single, simple, complete. A single access statement is required

corresponding to each defined structure; without an access state-

ment, there is no need to define a structure. Data item definitions

are optional; there may be zero, one, or more data items defined in

a structure. Defined items may be elementary, or they may be struc-

tures containing access statements and data item definitions.

**13



20

5.3 Access Information

Associated with each structure is a data access state-

ment; the number of records retrieved plus the structuring options

specified determine the structure of the declared user record.

Access information may be based on set ownership or membership,

or on qualification using record content.

The form of the access statement is:

ACCESS recordnamel RECORD

E Qualification ]

rrMEMBER OWNED BY
IN setname record-reference

OWNER OF

Both qualification and set specification are optional.

The outermost structure sometimes will employ neither, as when

creating virtual records corresponding to all data base records

of a given type:

ACCESS STUDENT RECORD.

Sometimes it will employ qualification, when creating virtual

records corresponding to a subset of the data base records:

ACCESS STUDENT RECORD
WHERE MAJOR 'DEC SCI'.

I iIp. i~ . . .I[ .. I . . . . . ,



21

Sometimes access will employ set specification:

ACCESS GRADE

MEMBER IN STU-GRD OWNED BY STUDENT.

And sometimes access will employ both set specification and

qualification:

ACCESS GRADE

WHERE GRD - 4

MEMBER IN STU-GRD OWNED BY STUDENT.

When the access statement is not in the outermost structure decla-

ration, it is expected that set specification will be used. To

retain compatability with our relational interface, access based

on qualification without set specification is permitted, though

for performance reasons it is discouraged. The precise form of

qualification is of little theoretical interest; we use relational

and Boolean operators and a syntax based on SEQUEL. The only

slight complication arises because CODASYL records are not nor-

malized and may include repeating values; therefore a distinction

must be made between any value satisfying a condition and all

values satisfying the condition.

Note that records used in constructing user records are

retrieved in a top-down order; that is, a record for the outer-

most structure is accessed first, then records for its directly

contained structures, followed by the successive levels of contained

*iI



22

structures. Thus, any data used in qualification must be either

from the record being accessed or from higher level structures;

likewise, any records used in set specification must have been

accessed in a higher-level structure.

Record-reference has the form:

structurename recordname

although if a record type is referenced in only a single access

statement, specification of the containing structure name may be

omitted. Record reference may itself employ set specification.

Thus to access COURSE records corresponding to GRADE records pre-

viously accessed, we write:

ACCESS COURSE RECORD
OWNER IN CRS-SEC OF SECTION
OWNER IN SEC-GRD OF GRADE.

Finally, we note that it is often useful to construct

user views that are based on other, previously defined views.

Therefore, we permit records accessed in a structure declaration

to be either data base records or virtual user records; the only

restriction on use is that since set relationships are defined only

for real records, they must not be employed to identify desired

user records.

/ ,1



23

5.4 Data Item Definition

Data items in user records are of three types, and there-

fore three forms of data item definition are provided. For elemen-

tary virtual items, definition has the form:

item-name: (description)

arithmetic-expression

The arithmetic expression can be any well-formed arith-

metic expression and may employ built-in functions such as MAX,

COUNT, SUM, and AVERAGE. The description is optional; it specifies

which terms are summary values and, when grouped entries are re-

quested, specifies at which level summaries are to be taken. Note

that all terms used in arithmetic expressions must be single-

valued; thus, if terms from contained structures are employed,

all intervening structures must have single extent requested.

Just as data retrieval in virtual record construction was

performed top-down, data item computation is performed bottom-up.

This imposes a restriction on the use of terms in arithmetic ex-

pressions: while terms used may be real or virtual, all virtual

terms must be from a contained lower level structure.

Also, we note that in some instances when a single data

value is to be selected from an accessed record, we may choose to

introduce a defined data item rather than add another contained



24

structure. Thus, to retrieve the term of a section corresponding

to a previously accessed grade, we may write:

TERM: ACCESS SECTION RECORD

OWNER IN SEC-GRD OF GRADE

SELECT TERM.

Real data items may be defined as were virtual items;

the arithmetic expression then is the simplest possible, containing

only the single term. Alternatively, if several real items are to

be contained in a single structure, they may be defined by selection

from the record accessed within the structure.

Virtual data items are themselves structures, with

definition as described in section 5.2.

Only data items explicitly defined or selected will be

included in the constructed user record.

5.5 An Example of A Mapping Definition

The user record to be defined is the summary transcript

introduced in section 2. The mapping definition to produce this

transcript is provided in figure 4. We note, but are largely un-

concerned by, the fact that the map is quite difficult to read.

The external schema facility is intended to provide an interface

for applications programmers permitting more easy access to stored

information. It is not necessary that preparation of mapping

I..



25

definitions be simple for these programmers; indeed, we are not

certain that this would be valuable since we do not intend for

these maps to be prepared by programmers. However, alternate

formats for definition might prove preferable.

STRUCTURE TRANSCRIPT:

ACCESS STUDENT WHERE MAJOR - 'DEC SCl'.
SELECT STUDENT-NAME.

TERM-LEVEL STRUCTURE, CONTAINS ALL TERM SUMMARIES
STRUCTURE TERM-DATA: (SUMMARY, ALL, GROUP BY TERM,

ORDER BY TERM).
ACCESS GRADE RECORD

MEMBER IN STU-GRD OWNED BY STUDENT.
TERM:

ACCESS SECTION RECORD
OWNER IN SEC-GRD OF GRADE.

SELECT TERM.
CREDITS:

ACCESS COURSE RECORD
OWNER IN CRS-SEC OF SECTION
OWNER IN SEC-GRD OF GRADE.

SELECT CREDITS.
TERM-AVERAGE: (TERM SUMMARY)

SUM (GRD*CREDITS)/SUM (CREDITS).
TRANS-AVERAGE: (SUMMARY)

SUM (GRD*CREDITS)/SUM (CREDITS).
END TERM-DATA.

END TRANSCRIPT.

Figure 4 -- Definition of Map to Construct Summary Transcript.



26

I

6. Remaining Difficulties

A number of significant difficulties remain, relating to

implementation, update, and user performance. There are significant

design problems that must be surmounted if virtual data bases are

to be produced on demand, rather than produced off line and stored.

These problems are most troublesome when the map employs ORDERED BY

specification, particularly when the ordering terms are virtual

items, or when the user record definition itself exploits other

virtual user records.

Most external schema definitions will employ maps that

are not invertible, and this is known to cause difficulty when the

resulting user records must be updated [4, 6]. It is of course

necessary that changes to the user records be captured as changes

to the corresponding stored data base records, yet the changes to

be made cannot always be determined if the maps are not invertible.

In fact, analysis of this problem to date has been restricted to

the simpler relational model; update of a CODASYL data base which

according to the 1978 specifications may have very complex set

selection requirements will no doubt prove at least as difficult.

Of course, if an enhanced external schema facility is

proposed to replace the present subschemas provided by CODASYL in

order to provide better support of applications programmers, it is

p. i *I I . . ...



"I

27

5

certainly desirable to verify that improved programmer performance

does indeed result. Human factors experimentation in data model

and programming language design has proved exceedingly difficult.

Nevertheless, some valuable studies are available as examples,

and it is necessary that some evaluation of the proposed interface

be performed.

7. Concluding Remarks

The interested reader is referred to earlier works for a

more complete treatment of hierarchies and recursive hierarchies

[5]. An outline of a design for implementation is also presented

[5:,.

We are presently engaged in developing a prototype

external schema facility with acceptable machine performance, and

it should be completed by spring of 1979. Performance data, user

reactions, and a demonstration should be available before the

SIOMOD conference in May 1979.

' '1

i I [I i Ifl IE II . . _ _ 2 -



28

ACKNOWLEDGEMENTS

I would like to acknowledge my debt to my colleagues at
the University of Pennsylvania, Rob Gerritsen and Frank Germano;
to my co-panelists at the Fourth Very Large Data Base Conference,
John Berg, Frank Manola, and Diane C. P. Smith; and to my co-
participants at the N.B.S. Three-Schema Feasibility Workshops,
particularly Don Chamberlin, Henry Lafkowitz, and Carlo Zaniolo.
Their thinking has influenced my thinking. Obviously, biases,
errors, and omissions in this paper are my own.

REFERENCES

1. "ANSI/X3/SPARC Study Group on Data Base Management Systems
Interim Report 75-02-08". FDT--Bulletin of the ACM
SIGMOD, Vol. 7, No. 2, 1975.

2. Berg, J. L. "Implementing a Framework for DBMS Standards".
Unnumbered Working Paper, Institute for Computer Sciences
and Technology, National Bureau of Standards, Gaithersberg,
MD., March 1978.

3. Berg, J. L. Unpublished letter to ANSI/X3/SPARC Study Group
membership, Document No. ANSI/X3/SPARC/DBS-SG-78-6,
November 1978.

4. Bernstein, P. A. and Dayal, U. "On the Updatability of
Relational Views". Proceedings of the Fourth Inter-
national Conference on Very Large Data Bases, Berlin,
West Germany, September 1978, pp. 368-377.

5. Clemons, E. K. Design of a User Interface for a Relational
Data Base, Dissertation, School of Operations Research,
Cornell University, 1976.

6. Clemons, E. K. "An External Schema Facility to Support Data
Base Update". Databases: Improving Usability and
Responsiveness, ed. Ban Schneiderman, Academic Press,
New York, 1978, pp. 371-398.

7. Clemons, E. K. "The External Schema and CODASYL".
Proceedings, Fourth International Conference on
Very Large Data Bases, Berlin, West Germany,
September 1978, p. 130.

8. Clemens, E. K. "Rational Data Base Standards: An Examination
of the 1978 CODASYL DDLC Report". Decision Sciences
Working Paper 78-10-02, University of Pennsylvania, 1978.



29

9. "CODASYL Data Base Task Group April 71 Report". ACM,
New York, 1971.

10. "CODASYL Data Description Language Committee Journal of
Development", 1978.

11. Engels, R. W. "An Analysis of the April 1971 Data Base
Task Group Report". Proceedings ACM SIGFIDET Workshop'
1971, ACM, New York, pp. 69-92.

12. Lochovsky, F. and Tsichritzis, D. "User Performance Con-
siderations in DBMS Selection". Proceedings, ACM SIGMOD
Workshop, Toronto, Canada, August 1977, pp. 128-134.

13. Manola, F. "On Relating the CODASYL Database Languages
and the ANSI/SPARC Framework". Proceedings, Fourth
International Conference on Very Large Data Bases,
Berlin, West Germany, September 1978, p. 132.

14. Manola, F. "A Review of the 1978 CODASYL Database
Specifications". Proceedings, Fourth International
Conference on Very Large Data Bases, Berlin, West
Germany, September 1978, pp. 232-242.

15. Smith, D. C. P. "Conversion and the CODASYL Framework".
Proceedings, Fourth International Conference on
Very Large Data Bases, Berlin, West Germany,
September 1978, pp. 133-134.

16. Smith, J. M. and Smith, D. C. P. "Integrated Specifications
for Abstract Systems",Technical Report UUCS-77-112,
Computer Science, University of Utah, 1977.

17. Taylor. R. W. "Data Administration and the DBTG Report".
Proceedings ACM SIGMOD Workshop 1974, ACM, New York,
pp. 431-444.

18. Tsichritzis, D. and Klug, A. "The ANSI/X3/SPARC DBMS
Framework Report of the Study Group on Database
Management Systems". AFIPS Press, Montvale, N. J.,
1977.

* / !



DISTII2 U.VICLi LISI'

Oepartent of the i avy - Office of Laval R esearch

Gata Case :Ianagement Systems Project

Lefense Documentation Center Office of Naval Research
(12 conies) (2 copies)
Cameron Station Information Systems Program
Alexandria, VA 22314 Code 437

Arlington VA 22217

Office of 4aval Pesearch Office of in4aval Research
Code 102IP Branch Office
Arlington. Virginia 22217 495 Summer Street

Boston. ;.1A 022l

Office of Javal aesearch Office of Caval ?esearch
3ranch Cffice. Cnicago :ranch Office. Pasadena
536 South Clark Street 1030 East Green Street
Chicago, IL Gj6j5 Pasadena. CA )1lv6

New York Area Office Naval Research Laboratory
(6 copies)

715 Broadway - 5th Floor Tecnnical Information 4Avision
L ew York, 4Y IkZj3 Code 2627

-ashington, DC 20375

Cr. A. L. Slafkosky Office of Naval iResearch
Scientific Advisor Code 455
Conxmandant of the :.arine Corps Arlington VA 22217
(Code RD-I)
v'iasnington XC 203D

Office of Uaval Researcn N aval Electronics Laboratory Center
Code 456 Advanced Software Technology Division
Arlington, VA 22217 Code 5200

San Diego. CA 92152

f.. 4 6

,4 t



Page 2

vir. E. H. Gleissner Captain Grace Mi. ioooer
iiaval Snip Research and iAICG:CJ:;IS Planning 2ranch
Cevelopment Center (Oi-916L)
Coputation & Aathwnatics ept. iffice of Chief of ,'aval Operations
Cethesda ..Z 2ZJ04 Iasnington LC 20350

Mr. KLm t. Thompson Bureau of Library and
Technical Director Information Science iesearch
Information Systems Division Rutgers - Tihe State University
(OP-911G) 169 College Avenue
Office of Chief of Naval Operations !ew 3runswick. JU 069l3
Aashington. DC 20350 Attn: Fr. ilenry Voos

Professor Omar Uing Defense ;.'apping Agency
Colurbia University Tooograpnic Center
in the City of Wew York AV'14: Advanced Technology
Dept. of Electrical Engineering Division
and Computer Science Code 413OU (,Ir. '. ;.iullison)
i;ew York. ,Y 19627 6509 Drookes Lane

;ashinoton. D.C. 2315

Commander, Naval Sea Systems Command MIajor J.P. Pennell
Department of tne Navy Headquarters. tMrine Corps
Washington, D.C. 2U362 NIashington. D.C. 2038
A'xnaIOai (P.IS33611) ATTEN!'.ION: Code CCA-40

Captain Richard L. riartin, US.i Professor i:iKe Athtans
Co.-manding Officer Massachusetts Institute of Technology
USS Francis iiarion (LPA-249) Dept. of Electrical Lngineering and
FPO ;ew York 09501 Computer Science

77 ',ass. Avenue
Cambridge, 'M 02139


